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Note 

An Algorithm to Fin 
between Two Nodes in a Gra 

The problem of finding paths connecting two nodes in a given graph is of great 
interest for several applications in different fields; Whenever complete information 
on all paths (e.g., total number of pahts, length, and cost) is needed. a heuristic- 
search is useless. If the size of a given application is manageable in terms of 
available CPU time and,/or memory limits, an exhaustive search (that is a COL‘R-~ 
prehensive analysis) is still the only way to solve this problem [I 1. 

The algorithm presented in this note has been successfully used to analyze data 
from TvIetropolis-Monte Carlo [2a] and molecular dynamics [Zb] compute: 
simuiations of 125 water molecules interacting through MCY [3] or ST2 [4< 
potentials. However, it could be easily used virtually without modifications 1~ an:. 
case that requires an exhaustive search of an undirecred graph, 

A schematic flow chart of the algorithm is presented in Fig. i. The graph ;Z be 
examined. G, the start, and end nodes are given as input data (block I ). Ths 
undirected graph C includes i%’ nodes and it is represented by an adjacency matrix 
in which the irh row lists the nodes adjacent to node i. The order in. which nodes 
are explored is unessential for our purposes. 

This problem is ideally suited for a recursive algorithm, owever, sir,ce we wanI 
to use languages that do not support recursion (e.g., FORTWJd. OCCAM2), WE 
decided to implement backtracking as an alternative approach. The progress 
consists of an exhaustive depth-first graph search fer al/ solrrtions. A stack is used, 
where the program stores/retrieves the appropriale context, 1.0 go one step 
forward/backward in the graph, by updating a stack index. The program starts 
pointing IO the adjacency list for the start-node (block 2 ), selects an adjacent r,ode 
Ipot vet explored (blocks 4-6), tests for solution (i.e.. :he end--node), a dead end, o!‘ 
a cycle (blocks 7 and 9): and stores intermediate results (block Iill. This process is 
accomplished by pushing the working adjacency matrix in the srack and modifying 
by zeroing the adjacency just explored. At this poict the program is ready ro foIio:t, 
a pattern in the graph structure by successive exploration of one of the adjacens 
rtodes. i (block 12): until a solution, a dead-end or a cycle is found. When a 
solution is found the node list is printed (block 8 ) and the program goes OG: step 
back (block 10) to repeat the cycle for all the previous adjacencies not yet explcred. 
The back travel in the proper way along the graph is granted by retrieving the 
appropriate adjacency matrix from the stack. Memory requiremenrs are of rhe 
order of N x K x L. where N is the number of nodes. K is the maximum numhes or 
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FIG. 1. Schematic flowchart of the algorithm. 
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FIG. 2. Example of a simple graph and the corresponding adjaceccy mauix. 

adjacencies for each node, and L is the maximum depth to be reached in the 
exploration of 6. 

As an illustrative example, let us consider the simple graph shown in Fig. 2 with 
its adjacency matrix, and suppose we want to find ail the pathways connecting node 
1 with node 5. In Fig. 3 are schematically shown the steps followed by the program. 
As one can see, ali branchings of a given node are systematically explored each time 
selecting the deepest node in the graph. Cycles (e.g., 1&6-332-l... an Fig. 3) are 
avoided since the program maintains an updated list of the nodes already visikd 
along the path. Indeed, all the secondary paths to a node already in the list 
generated during the search process, are identified and ignored. The program exits 
when the last adjacency of the last adjacent node to the start-node is solved (node 
5 fro-m node 3 in the example of Fig. 2). 

FIG. 3. Diagram of the search process followed by the program Dashed lines represent aljacencies 
that generate cycies. 
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TABLE I 

Characteristic Parameters of the Graph 
Generated from a Monte Carlo Configuration 

Number of nodes 125 (water mol.) 
Average H-bond/water 2.1 
Start node 8 
End node 22 
Number of paths found 2114 
Number of steps 306920 
VAX 1 I/750 with FPU 3360 s 
CRAY X-MP;‘48 6.4 s 
1’0 MHz-T800 (FORTRAN) 2040 s 
120 MHz-T800 (OCCAMZ) 95 s 

IVote. Execution times are of the program running on 
VAX 11,!750 with floating point accelerator, CRAY X-MP.!48 and 
l-T800 Transputer (FORTRAN and OCCAMZ). 

In our computer simulations on aqueous systems [S] we are interested in charac- 
terizing the H-bond pathways between two distant water molecules, in terms of 
their length, number, and topology. In this work we use the present algorithm to 
analyze the pathways between two, arbitrarily chosen, water molecules belonging to 
a Monte Carlo configuration. The adjacency matrix was constructed assuming that 
two water molecules are “bonded” if their interaction energy is less than - 12kJ. At 
this energy threshold. chosen only for demonstration purposes, the system is well 
above the percolation limit, therefore most likely a connectivity pathway exists 
between any given couple of water molecule, and the underlying H-bond network 
is intricate enough to present virtually all kinds of possible branchings. 

In Table I we report CPU time values for a VAX 11/750, CRAY X-MP/48, a 
Transputer-based system [6], and data referring to the specific snapshot selected 
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FIG. 4. Schematic representation of the S-TSOO Transputers system. 
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from our simulation. In this case we have N= 125 {the number of water molecuies 

in the simulated sample), K = 5 (maximum number of H-bonds per water). i = 103 

(we are interested m pathways up to 100 molecules iongi. 
As one can see from Table I, the program on CRAY runs over 500 times faster 

than on VAX without modifications or restructuring, since it is automa.ticalh:J 
recrorizPd directly by the CRAY FORTRAN compiler. The same FORTRAN 
program runs on a system which includes one 20MHz-T800 Transputer [7], in 
almost half of the VAX time. When implemented In OCCAM2 [Xl? thai Is rhe 

native high-level ianguage for Transputers. it runs in 95 s: that is only ‘i5 ~~IXFS 
slower than on CRAY (which is more than 1000 times more expensive). The btg 

difference in performance between the FORTRAN and 8CCAM2 impiementatmns 
for Transputers is essentially due to the smart matrix assignment instructi.cns .oi 

OCCAMZ. 
The analysis of a single configuration cannot be efficientiy paralieiized. In f<t.ct. 

this kind of graph search cannot be efficiently ~rn~~ernc~ted in parallel processes: 
since information on all nodes and cycles already explored have to be shared in real 

rime among all concurrent processes, and the information exchange through the 

communication channels would degrade severely the overal: system performance 
Another way to take advantage of parallelism, is the so-called procesor _!ir~;> 
method [9]. where each processor analyzes a different configuration. running ihe 

same program on independent sets of data. Thus no communications betiveeri 

processors occur other than those needed to send the pathways list to the masse: 

processor. Bn the present case we used a ST800 Transputer array configured as 

schematically shown in Fig. 4. The overali speed of the farm is essentially i;_&- 

pendent on the particular network topology, and it grows iinearly with the number 
of processors. 
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