
ri)URh.kL CF CC!.IFLTATION.AL PHYSICS 87. 231-236 (19901

Note

An Algorithm to Fin
between Two Nodes in a Gra

The problem of finding paths connecting two nodes in a given graph is of great
interest for several applications in different fields; Whenever complete information
on all paths (e.g., total number of pahts, length, and cost) is needed. a heuristic-
search is useless. If the size of a given application is manageable in terms of
available CPU time and,/or memory limits, an exhaustive search (that is a COL‘R-~
prehensive analysis) is still the only way to solve this problem [I 1.

The algorithm presented in this note has been successfully used to analyze data
from TvIetropolis-Monte Carlo [2a] and molecular dynamics [Zb] compute:
simuiations of 125 water molecules interacting through MCY [3] or ST2 [4<
potentials. However, it could be easily used virtually without modifications 1~ an:.
case that requires an exhaustive search of an undirecred graph,

A schematic flow chart of the algorithm is presented in Fig. i. The graph ;Z be
examined. G, the start, and end nodes are given as input data (block I). Ths
undirected graph C includes i%’ nodes and it is represented by an adjacency matrix
in which the irh row lists the nodes adjacent to node i. The order in. which nodes
are explored is unessential for our purposes.

This problem is ideally suited for a recursive algorithm, owever, sir,ce we wanI
to use languages that do not support recursion (e.g., FORTWJd. OCCAM2), WE
decided to implement backtracking as an alternative approach. The progress
consists of an exhaustive depth-first graph search fer al/ solrrtions. A stack is used,
where the program stores/retrieves the appropriale context, 1.0 go one step
forward/backward in the graph, by updating a stack index. The program starts
pointing IO the adjacency list for the start-node (block 2), selects an adjacent r,ode
Ipot vet explored (blocks 4-6), tests for solution (i.e.. :he end--node), a dead end, o!‘
a cycle (blocks 7 and 9): and stores intermediate results (block Iill. This process is
accomplished by pushing the working adjacency matrix in the srack and modifying
by zeroing the adjacency just explored. At this poict the program is ready ro foIio:t,
a pattern in the graph structure by successive exploration of one of the adjacens
rtodes. i (block 12): until a solution, a dead-end or a cycle is found. When a
solution is found the node list is printed (block 8) and the program goes OG: step
back (block 10) to repeat the cycle for all the previous adjacencies not yet explcred.
The back travel in the proper way along the graph is granted by retrieving the
appropriate adjacency matrix from the stack. Memory requiremenrs are of rhe
order of N x K x L. where N is the number of nodes. K is the maximum numhes or

232 MIGLIORE, MARTORANA, AND SCIORTINO

FIG. 1. Schematic flowchart of the algorithm.

ALGORITHM FOR EXHAUSTWE SEARCH

FIG. 2. Example of a simple graph and the corresponding adjaceccy mauix.

adjacencies for each node, and L is the maximum depth to be reached in the
exploration of 6.

As an illustrative example, let us consider the simple graph shown in Fig. 2 with
its adjacency matrix, and suppose we want to find ail the pathways connecting node
1 with node 5. In Fig. 3 are schematically shown the steps followed by the program.
As one can see, ali branchings of a given node are systematically explored each time
selecting the deepest node in the graph. Cycles (e.g., 1&6-332-l... an Fig. 3) are
avoided since the program maintains an updated list of the nodes already visikd
along the path. Indeed, all the secondary paths to a node already in the list
generated during the search process, are identified and ignored. The program exits
when the last adjacency of the last adjacent node to the start-node is solved (node
5 fro-m node 3 in the example of Fig. 2).

FIG. 3. Diagram of the search process followed by the program Dashed lines represent aljacencies
that generate cycies.

234 MIGLIORE, MARTORANA, .4ND SCIORTfNO

TABLE I

Characteristic Parameters of the Graph
Generated from a Monte Carlo Configuration

Number of nodes 125 (water mol.)
Average H-bond/water 2.1
Start node 8
End node 22
Number of paths found 2114
Number of steps 306920
VAX 1 I/750 with FPU 3360 s
CRAY X-MP;‘48 6.4 s
1’0 MHz-T800 (FORTRAN) 2040 s
120 MHz-T800 (OCCAMZ) 95 s

IVote. Execution times are of the program running on
VAX 11,!750 with floating point accelerator, CRAY X-MP.!48 and
l-T800 Transputer (FORTRAN and OCCAMZ).

In our computer simulations on aqueous systems [S] we are interested in charac-
terizing the H-bond pathways between two distant water molecules, in terms of
their length, number, and topology. In this work we use the present algorithm to
analyze the pathways between two, arbitrarily chosen, water molecules belonging to
a Monte Carlo configuration. The adjacency matrix was constructed assuming that
two water molecules are “bonded” if their interaction energy is less than - 12kJ. At
this energy threshold. chosen only for demonstration purposes, the system is well
above the percolation limit, therefore most likely a connectivity pathway exists
between any given couple of water molecule, and the underlying H-bond network
is intricate enough to present virtually all kinds of possible branchings.

In Table I we report CPU time values for a VAX 11/750, CRAY X-MP/48, a
Transputer-based system [6], and data referring to the specific snapshot selected

,---.

\ \ /’ ‘_ _d -r L,-,
, I
I /

FIG. 4. Schematic representation of the S-TSOO Transputers system.

ALGORITHM FOR EXHAUSTIVE SEP.RCH ; s 5

from our simulation. In this case we have N= 125 {the number of water molecuies

in the simulated sample), K = 5 (maximum number of H-bonds per water). i = 103

(we are interested m pathways up to 100 molecules iongi.
As one can see from Table I, the program on CRAY runs over 500 times faster

than on VAX without modifications or restructuring, since it is automa.ticalh:J
recrorizPd directly by the CRAY FORTRAN compiler. The same FORTRAN
program runs on a system which includes one 20MHz-T800 Transputer [7], in
almost half of the VAX time. When implemented In OCCAM2 [Xl? thai Is rhe

native high-level ianguage for Transputers. it runs in 95 s: that is only ‘i5 ~~IXFS
slower than on CRAY (which is more than 1000 times more expensive). The btg

difference in performance between the FORTRAN and 8CCAM2 impiementatmns
for Transputers is essentially due to the smart matrix assignment instructi.cns .oi

OCCAMZ.
The analysis of a single configuration cannot be efficientiy paralieiized. In f<t.ct.

this kind of graph search cannot be efficiently ~rn~~ernc~ted in parallel processes:
since information on all nodes and cycles already explored have to be shared in real

rime among all concurrent processes, and the information exchange through the

communication channels would degrade severely the overal: system performance
Another way to take advantage of parallelism, is the so-called procesor _!ir~;>
method [9]. where each processor analyzes a different configuration. running ihe

same program on independent sets of data. Thus no communications betiveeri

processors occur other than those needed to send the pathways list to the masse:

processor. Bn the present case we used a ST800 Transputer array configured as

schematically shown in Fig. 4. The overali speed of the farm is essentially i;_&-

pendent on the particular network topology, and it grows iinearly with the number
of processors.

ACKNOWLEDGMENTS

We *ish to than-k Professor S. L. Fornili for many useful discttissions. Mr. G. La Gatrir:e.

Mr. M. Lapis, and Mr. S. Pappalardo for technical assistance. The present work ha.s been carried or_2
at IAIF-CNR and supported also by local MPf 60%. CRRNSM, and Prog. Fin. S&t. Inform. e CA.

Parallelo funding.

REFERENCES

1. For a general treatment of graphs search strategies see: (a) “z RICH, .P,rt$icial Ifiiiei!igmrr

(McGraw-Hill, New York, 1983). p. 55: (b) N. J. NILSSON, P;i:triples qf Airtjiicial bi:rilfgmce (riopa.

Palo Alto. CA. 1980). p. 53.

2. ia) J. P. VALLEAU AND S. G. Wtr-rtrxxox. “-4 Guide to Monte Carlo for Statistical Mechamcs. I.
Highways.” Modem Theorrticnl Chemistry, Vol. 5. edited by B. 1. Berm (Plenum, New York. 1977).

p. i37; (0) J. KUSHKK AND B.J. BERNE, “Molecular Dynamics Merhods: Continuous Potentials,“
.Woderrl i”/mwe!icai Chemisrry. Vol. 6, edited by B. J. Berm (Pfenum, New York, 197i). 3. 41.

3. 0. MATSL~KA. E. CLE~ENTI. AND M. YOSHIMINE. J Chrni. P/!~.T. 64, 1351 tl976!.

4. F. H. STILLIVGER AND .A. RAHhiAN. J. CkWi. P/fyS. 60, 1545 j 197’1.

581!87,1-16

236 MIGLIORE, MARTORANA, .4ND SCIORTINO

5. R. NOTO, M. MIGLIORE, F. SCIORTINO. AND S. L. FORNILI. bfof. Simd. 1, 125 (19881; F. SCIORTINO
AND S. L. FORNILI, .I. Chem. Phys. 90, 2786 (1989); F. BRUCE'. V. MARTORANA, AND S. L. FORNILI,
Mol. Simul. 1; 309 (1988 j.

6. INMOS, Trmspurer Developnzent S~~sfum (Prentice-Hall, London, 1988). p. 129.
7. INMOS, Technical Note No. 6 (INMOS, Bristol. 1986).
8. D. POUNTAIN, .4 Tutorial Inrroduction to OCC.4M Progrunzmirig (INMOS, Bristol, 1987), p. 35.
9. C. R. JESSHOPE, Conzpur. Phyx C~mtnun. 41, 363 (1986).

RECEIVED: December 16, 1988; REVISED: March 8, 1989

M. MIGLIORF
v. i-viARTORAN.4

C. N. R.-Institu[e .for Interdisciplinar~~ Applications of Physics
via Archirafi 36, I-90123 Palermo, Italy

F. SCIORTINO

Deparlment qf Physics, University of Palermo
via .4rchiraJ, 36, I-90123 Palermo, Italy

